Electron Spin Resonance Spectrum of BH₃⁻

By M. C. R. SYMONS* and H. W. WARDALE (Department of Chemistry, The University, Leciester)

WE have studied the electron spin resonance spectrum of γ -irradiated polycrystalline potassium tetrahydridoborate at 77°K. The main paramagnetic species stabilised at this temperature has been identified as the radical anion of monoborane, BH₃-. Our identification is based on the following observations:

- (i) The radical contains one boron atom and three equivalent protons.
- (ii) The isotropic proton hyperfine coupling, although less than that for the isoelectronic

methyl radical, is nevertheless quite reasonable for BH₃-.

(iii) The isotropic ¹¹B hyperfine coupling is very close to expectation for BH₃-, the corresponding U-values1 for BH3-, CH3, and NH_3 all being close to 3.5, which indicates unit spin-density in a 2p-orbital on boron.

At least two other paramagnetic species are present in y-irradiated potassium tetrahydridoborate and full details of these results will be reported later.

TABLE

Electron spin resonance parameters for XH₃ radicals

Hyperfine coupling constants (gauss)

Radical	$A_{iso}(\mathbf{X})$	$A_{iso}(H)$	gav	$U^{\mathbf{X}}$ a	Reference
¹¹ BH ₃	(+) 24 (+) 41 (+) 19.5	(-) 16.5	2.0013	3·3	This work
¹³ CH ₃		(-) 23.0	2.0026	3·7	2,3
¹⁴ NH ₃ +		(-) 25.9	2.0035	3·5	4

* $U^{\mathbf{x}} = 100 A_{1so}(\mathbf{X})/\rho_{\mathbf{x}} \cdot A^{\circ}(\mathbf{X})$ where $\rho_{\mathbf{X}}$, the spin density on X, is taken as unity and $A^{\circ}(\mathbf{X})$ is the calculated hyperfine coupling for one electron in the 2s-orbital of X.

(Received, June 14th, 1967; Com. 599.)

¹ T. Hunter and M. C. R. Symons, Nature, 1967, 213, 1131.

² T. Cole, H. O. Pritchard, N. R. Davidson, and H. M. McConnell, Mol. Phys., 1958, 1, 406.
³ R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 1963, 39, 2147.

⁴ T. Cole, J. Chem. Phys., 1961, **35**, 1169.